Zum Inhalt springen

Golden powers revisited

Years ago I wrote a post Golden powers are nearly integers. The post was picked up by Hacker News and got a lot of traffic. The post was commenting on a line from Terry Tao:

The powers φ, φ2, φ3, … of the golden ratio lie unexpectedly close to integers: for instance, φ11 = 199.005… is unusually close to 199.

In the process of writing my recent post on base-φ numbers I came across some equations that explain exactly why golden powers are nearly integers.

Let φ be the golden ratio and ψ = −1/φ. That is, φ and ψ are the larger and smaller roots of

x² − x − 1 = 0.

Then powers of φ reduce to an integer and an integer multiple of φ. This is true for negative powers of φ as well, and so powers of ψ also reduce to an integer and an integer multiple of ψ. And in fact, the integers alluded to are Fibonacci numbers.

φn = Fn φ + Fn − 1
ψn = Fn ψ + Fn − 1

These equations can be found in TAOCP 1.2.8 exercise 11.

Combining the equations we have

φn = Fn + 1 + Fn − 1 + ψn

So yes, φn is nearly an integer. In fact, it’s nearly the sum of the (n + 1)st and (n − 1)st Fibonacci numbers. The error in this approximation is ψn, and so the error decreases exponentially with alternating signs.

The post Golden powers revisited first appeared on John D. Cook.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert