Is Python OCR Inaccurate? Try These Image Preprocessing Techniques!
When using Python for OCR (Optical Character Recognition), poor image quality — such as blur, skew, or noise — can lead to low recognition accuracy. This article introduces essential image preprocessing techniques to improve OCR performance, along with recommended third-party image enhancement APIs.
✅ 1. Key Image Preprocessing Techniques
1. Adaptive Thresholding to Enhance Contrast
Use adaptive thresholding to handle uneven lighting or background:
import cv2
img = cv2.imread('input.jpg', 0)
binary = cv2.adaptiveThreshold(
img, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2
)
cv2.imwrite('binary.jpg', binary)
- Denoising and Removing Artifacts
blur = cv2.GaussianBlur(binary, (3, 3), 0)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
denoised = cv2.morphologyEx(blur, cv2.MORPH_OPEN, kernel)
cv2.imwrite('denoised.jpg', denoised)
import numpy as np
coords = cv2.findNonZero(denoised)
angle = cv2.minAreaRect(coords)[-1]
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
(h, w) = denoised.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(denoised, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
cv2.imwrite('rotated.jpg', rotated)
- Upscaling Low-Resolution Images
Bicubic interpolation is recommended to retain text clarity:
resized = cv2.resize(rotated, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
cv2.imwrite('resized.jpg', resized)
- Shadow and Uneven Lighting Removal
dilated = cv2.dilate(img, np.ones((7,7), np.uint8))
bg = cv2.medianBlur(dilated, 21)
diff = 255 - cv2.absdiff(img, bg)
norm = cv2.normalize(diff, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX)
cv2.imwrite('shadow_removed.jpg', norm)
🚀 2. Recommended Image Enhancement APIs
To simplify preprocessing, consider using these high-quality online tools and APIs:
📐 Document Correction
Auto deskew and perspective correction
📄 Virtual Scanner
Scan-like enhancement & background removal
🌫️ Shadow Removal
Fix uneven lighting and shadows
🔍 Image Enhancement
Improve sharpness, contrast, brightness
🌐 OCR + Translation
Extract and translate text automatically
🧠 3. Recommended OCR Processing Workflow
- 📤 Upload original image → Process using API (deskew, denoise, etc.)
- 📥 Download enhanced image
- ⚙️ Apply further preprocessing if needed (thresholding, resize, etc.)
- 🔠 Use OCR engine (Tesseract / PaddleOCR) to extract text
- 🧹 Post-process output (correct errors, restore layout)
Need a full Python template to automate preprocessing and OCR? Let me know — I can provide a complete script.