A2A vs MCP: A Comprehensive Protocol Comparison
This guide compares the Model Context Protocol (MCP) and the Agent-to-Agent (A2A) protocol, two leading protocols for building and orchestrating AI agents.
Table of Contents
- Core Design Philosophies
- Key Features Comparison
- Protocol Structure Examples
- Advanced Features
- Error Handling
- Subscriptions and Notifications
- Implementation Considerations
Core Design Philosophies
MCP | A2A |
---|---|
Resource-centric architecture with URI-addressable resources | Agent-centric design focused on standardized interoperability |
Emphasizes flexible data access patterns (get, set, subscribe) | Built around structured task management and agent workflows |
Provides granular control with client-side workflow orchestration | Formalizes agent discovery and capability advertisement |
Designed for direct interaction with model capabilities | Optimized for orchestrating multi-agent systems |
Key Features Comparison
Common Ground
- JSON-based Communication Structure
- MIME Type Support for diverse content
- Asynchronous Operation Support
- AI Agent Interaction capabilities
Agent Discovery and Capabilities
A2A Approach – „AgentCard“ Structure:
{
"name": "DocumentAnalyzerAgent",
"description": "Analyzes documents and extracts key information",
"url": "https://doc-analyzer.example.com",
"capabilities": {
"streaming": true,
"pushNotifications": true
},
"authentication": {
"schemes": ["Bearer"]
},
"defaultInputModes": ["application/pdf", "text/plain"],
"skills": [
{
"id": "extractEntities",
"name": "Extract Entities",
"description": "Identifies and extracts named entities from documents",
"inputModes": ["application/pdf", "text/plain"],
"outputModes": ["application/json"]
}
]
}
MCP Approach – Resource-Based Discovery:
{
"method": "tools/list",
"params": {}
}
// Response
{
"result": {
"tools": [
{
"name": "document_analyzer",
"description": "Analyzes documents and extracts key information",
"resources": [
"/document_analyzer/extract_entities",
"/document_analyzer/upload_document"
]
}
]
}
}
Protocol Structure Examples
MCP: Resource-Based Method Calls
- Resource Access Methods
// GET resource
{
"method": "resources/get",
"params": {
"uri": "/sentiment_analyzer/results",
"params": {
"textId": "doc-12345"
}
}
}
// SET resource
{
"method": "resources/set",
"params": {
"uri": "/sentiment_analyzer/text",
"content": {
"type": "text/plain",
"data": "I absolutely loved the product, though shipping was a bit slow."
}
}
}
// SUBSCRIBE to resource updates
{
"method": "resources/subscribe",
"params": {
"uri": "/sentiment_analyzer/stream",
"params": {
"frequency": "realtime"
}
}
}
A2A: Agent-Based Task Management
- Task Submission
{
"type": "SendTaskRequest",
"method": "tasks/send",
"params": {
"description": "Translate business proposal to Japanese",
"steps": [
{
"agent_id": "TranslatorAgent",
"skill_id": "translate",
"input": [
{
"type": "data",
"mimeType": "text/plain",
"data": "We are pleased to submit our proposal for your consideration."
}
],
"parameters": {
"sourceLanguage": "en",
"targetLanguage": "ja",
"formality": "formal"
}
}
]
}
}
- Multi-Step Task Workflow
{
"type": "SendTaskRequest",
"method": "tasks/send",
"params": {
"description": "Analyze customer feedback and prepare report",
"steps": [
{
"step_id": "extract",
"agent_id": "DataProcessorAgent",
"skill_id": "extractFeedback",
"input": [
{
"type": "data",
"mimeType": "application/json",
"data": {"source": "survey_responses.csv", "columns": ["date", "text", "rating"]}
}
]
},
{
"step_id": "analyze",
"agent_id": "SentimentAnalyzerAgent",
"skill_id": "batchAnalyze",
"input": [
{
"type": "step_output",
"step_id": "extract"
}
],
"parameters": {
"aspects": ["pricing", "quality", "service"],
"timeframe": "Q1_2024"
}
}
]
}
}
Advanced Features
MCP: Resource Manipulation and State Management
Complex Resource Structure:
{
"method": "resources/set",
"params": {
"uri": "/chat_session/context",
"content": {
"type": "application/json",
"data": {
"sessionId": "sess-9876",
"user": {
"id": "user-12345",
"preferences": {
"language": "en-US",
"expertise": "beginner",
"verbosity": "detailed"
}
},
"conversation": {
"topic": "Technical Support",
"priority": "high",
"history": [
{"role": "user", "content": "My application keeps crashing"},
{"role": "assistant", "content": "Let's troubleshoot that. When does it crash?"}
]
}
}
}
}
}
A2A: Advanced Task Orchestration
Task Control Operations:
{
"type": "UpdateTaskRequest",
"method": "tasks/update",
"params": {
"task_id": "task-123456",
"operation": "pause",
"reason": "Waiting for user input on parameter values"
}
}
Error Handling
MCP Errors
{
"error": {
"code": -32601,
"message": "Method not found",
"data": {
"requested_method": "resources/delete",
"available_methods": ["resources/get", "resources/set", "resources/subscribe"]
}
}
}
A2A Errors
{
"type": "ErrorResponse",
"error": {
"code": "AgentUnavailableError",
"message": "The requested agent 'DataProcessorAgent' is currently unavailable",
"details": {
"estimated_availability": "2024-04-27T18:00:00Z",
"alternatives": ["BackupDataProcessorAgent", "LegacyDataProcessorAgent"]
}
}
}
Subscriptions and Notifications
MCP Subscription Flow
// Subscribe
{
"method": "resources/subscribe",
"params": {
"uri": "/market_data/stock_prices",
"params": {
"symbols": ["AAPL", "MSFT", "GOOGL"],
"interval": "1m"
}
}
}
// Real-time update
{
"method": "server/notification",
"params": {
"subscriptionId": "sub-abcdef123456",
"content": {
"timestamp": "2024-04-27T16:42:15Z",
"updates": [
{"symbol": "AAPL", "price": 198.42, "change": 0.57},
{"symbol": "MSFT", "price": 412.65, "change": -0.32},
{"symbol": "GOOGL", "price": 167.88, "change": 1.24}
]
}
}
}
A2A Event Notification
{
"type": "EventNotification",
"event": {
"event_type": "TaskStatusChanged",
"task_id": "task-567890",
"previous_status": "Running",
"current_status": "Completed",
"timestamp": "2024-04-27T16:45:22Z",
"details": {
"completion_time": "12.4s",
"resource_usage": {
"compute_units": 0.0087,
"storage_bytes": 25600
}
}
}
}
Authentication and Security
MCP Authentication
{
"method": "resources/set",
"params": {
"uri": "/system/auth",
"content": {
"type": "application/json",
"data": {
"api_key": "sk-12345abcdef",
"session_id": "sess-678910"
}
}
}
}
A2A Authentication
{
"type": "AuthRequest",
"method": "auth/authenticate",
"params": {
"agentId": "DataAnalysisAgent",
"scheme": "Bearer",
"credentials": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."
}
}
Implementation Considerations
Choose MCP when:
- You need fine-grained control over resource access
- Your application requires client-side orchestration
- You prefer a simpler, resource-based approach
- Your system primarily involves direct client-model interaction
Choose A2A when:
- You’re building a multi-agent ecosystem
- You need standardized agent discovery and interoperability
- Your workflows involve complex, multi-step tasks
- You require formalized task state management
Note: Schemas are being enhanced and changed frequently. This guide will be updated periodically to reflect the latest changes.